Keeney, M. T., Rocha, E. M., Hoffman, E. K., Farmer, K., Di Maio, R., Weir, J., Wagner, W. G., Hu, X., Clark, C. L., Castro, S. L., Scheirer, A., Fazzari, M., De Miranda, B. R., Pintchovski, S. A., Shrader, W. D., Pagano, P. J., Hastings, T. G., & Greenamyre, J. T. LRRK2 regulates production of reactive oxygen species in cell and animal models of Parkinson’s disease. Science Translational Medicine, 16: eadl3438 (2024).https://doi.org/10.1126/scitranslmed.adl3438
Keeney, M. T., Hoffman, E. K., Weir, J., Wagner, W. G., Rocha, E. M., Castro, S., Farmer, K., Fazzari, M., Di Maio, R., Konradi, A., Hastings, T. G., Pintchovski, S. A., Shrader, W. D., & Greenamyre, J. T. 15-Lipoxygenase-Mediated Lipid Peroxidation Regulates LRRK2 Kinase Activity. BioRxiv (2024). https://doi.org/10.1101/2024.06.12.598654
Mahoney-Sánchez, L., Lucas-Clarke, H., Penverne, A., Evans, J. R., D’Sa, K., Strohbuecker, S., Lopez Garcia, P., Cosker, K., Soltic, D., O’Callaghan, B., Griffiths, A., Pintchovski, S. A., Plun-Favreau, H., Hallqvist, J., Mills, K., & Gandhi, S. The SNCA A53T mutation sensitizes human neurons and microglia to ferroptosis. BioRxiv (2025). https://doi.org/10.1101/2025.10.13.682089
General references
Mamais, A., Batchelor, R.D. Jr, et al. Parkinson’s disease LRRK2 mutations dysregulate iron homeostasis and promote oxidative stress and ferroptosis in human neurons and astrocytes. BioRxiv (2025). https://doi.org/10.1101/2025.09.26.678370
Kong, D., Li, C., et al. Identifying genetic targets in clinical subtypes of Parkinson’s disease for optimizing pharmacological treatment strategies. Signal Transduction and Targeted Therapy, 9: 320 (2024). https://doi.org/10.1038/s41392-024-02020-x
Lin, X., Pan, M., et al. Membrane phospholipid peroxidation promotes loss of dopaminergic neurons in psychological stress-induced Parkinson’s disease susceptibility. Aging Cell, 22: e13970 (2023). https://doi.org/10.1111/acel.13970
Wenzel, Sally E. et al. PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171: 628 - 641 (2017). https://www.cell.com
Jiang, Y.-N., Guo, Y.-Z., et al. Tianma Gouteng granules decreases the susceptibility of Parkinson’s disease by inhibiting ALOX15-mediated lipid peroxidation. Journal of Ethnopharmacology, 256: 112824 (2020). https://doi.org/10.1016/j.jep.2020.112824
Chen, Y., Fang, ZM., Yi, X. et al. The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis14, 205 (2023). https://doi.org/10.1038/s41419-023-05716-0
Liddell, J. R., Hilton, J. B. W., et al. Microglial ferroptotic stress causes non-cell autonomous neuronal death. Molecular Neurodegeneration, 19: 1–21 (2024). https://doi.org/10.1186/s13024-023-00691-8
Ryan, S.K., Zelic, M., Han, Y. et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration. Nat Neurosci26: 12–26 (2023). https://doi.org/10.1038/s41593-022-01221-3
Minnella, A., McCusker, K. P., et al. Targeting ferroptosis with the lipoxygenase inhibitor PTC-041 as a therapeutic strategy for the treatment of Parkinson’s disease. PLOS ONE, 19: e0309893 (2024). https://doi.org/10.1371/journal.pone.0309893
Bouchaoui, H., Mahoney-Sanchez, L., et al. ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radical Biology & Medicine, 195: 145–157 (2022). https://doi.org/10.1016/j.freeradbiomed.2022.12.086
Manivarma, T., Kapralov, A. A., et al. Membrane regulation of 15LOX-1/PEBP1 complex prompts the generation of ferroptotic signals, oxygenated PEs. Free Radical Biology & Medicine, 208: 458–467 (2023). https://doi.org/10.1016/j.freeradbiomed.2023.09.001
Tu, R., Han, Z., Zhang, H., et al. From pathogenesis to treatment: the emerging role of ferroptosis in Parkinson’s disease. Frontiers in Immunology, 16: 1709561 (2025). https://doi.org/10.3389/fimmu.2025.1709561
Gao, S., Zhou, L., et al. Cepharanthine Attenuates Early Brain Injury after Subarachnoid Hemorrhage in Mice via Inhibiting 15-Lipoxygenase-1-Mediated Microglia and Endothelial Cell Ferroptosis. Oxidative Medicine and Cellular Longevity, (2022). https://doi.org/10.1155/2022/4295208
Feng, Z., Li, F., et al. ALOX15-Mediated Neuron Ferroptosis Was Involved in Diabetic Peripheral Neuropathic Pain. CNS Neuroscience & Therapeutics, 31: e70440 (2025). https://doi.org/10.1111/cns.70440
T-type calcium channel antagonist program:
Matthews, L. G., Puryear, C. B., et al. T-type calcium channels as therapeutic targets in essential tremor and Parkinson’s disease. Annals of Clinical and Translational Neurology, 10: 462–483 (2023). https://doi.org/10.1002/acn3.51735
Handforth, A., Homanics, G. E., et al. T-type calcium channel antagonists suppress tremor in two mouse models of essential tremor. Neuropharmacology, 59: 380–387 (2010). https://doi.org/10.1016/j.neuropharm.2010.05.012
Miwa, H., & Kondo, T. T-type calcium channel as a new therapeutic target for tremor. Cerebellum (London, England), 10: 563–569 (2011).https://doi.org/10.1007/s12311-011-0277-y
Scott, L., Puryear, C. B., et al. Translational Pharmacology of PRAX-944, a Novel T-Type Calcium Channel Blocker in Development for the Treatment of Essential Tremor. Movement Disorders, 37: 1193–1201 (2022). https://doi.org/10.1002/mds.28969
Miwa, H., Koh, J., Kajimoto, Y., & Kondo, T. Effects of T-type calcium channel blockers on a parkinsonian tremor model in rats. Pharmacology Biochemistry and Behavior,97: 656–659 (2011). https://doi.org/10.1016/j.pbb.2010.11.014
Xiang, Z., Thompson, A. D., et al. The Discovery and Characterization of ML218: A Novel, Centrally Active T-Type Calcium Channel Inhibitor with Robust Effects in STN Neurons and in a Rodent Model of Parkinson’s Disease. ACS Chemical Neuroscience, 2: 730–742 (2011). https://doi.org/10.1021/cn200090z
Tabata, Y., Imaizumi, Y., et al. T-type Calcium Channels Determine the Vulnerability of Dopaminergic Neurons to Mitochondrial Stress in Familial Parkinson Disease. Stem Cell Reports, 11: 1171–1184 (2018). https://doi.org/10.1016/j.stemcr.2018.09.006
Leandrou, E., Chalata, I., et al. α-Synuclein oligomers potentiate neuroinflammatory NF-κB activity and induce CaV3.2 calcium signaling in astrocytes. Translational Neurodegeneration, 13: 11 (2024). https://doi.org/10.1186/s40035-024-00401-4
Kamau, P. M., Li, H., et al. Potent CaV3.2 channel inhibitors exert analgesic effects in acute and chronic pain models. Biomedicine & Pharmacotherapy, 153: 113310 (2022). https://doi.org/10.1016/j.biopha.2022.113310
Bourinet, E., Alloui, A., et al. Silencing of the CaV3.2 T-type calcium channel gene in sensory neurons demonstrates its major role in nociception. EMBO Journal, 24: 315–324 (2005). https://doi.org/10.1038/sj.emboj.7600515
Cai, S., Gomez, K., Moutal, A., & Khanna, R. Targeting T-type/CaV3.2 channels for chronic pain. Translational Research : Journal of Laboratory and Clinical Medicine, 234: 20–30 (2021). https://doi.org/10.1016/j.trsl.2021.01.002